Sven Rühle

sven.ruhle@gmail.com

 Sven Rühle received his degree in Physics in 1999 from the University of Cologne (Germany). In his master thesis he investigated linear and non-linear optical properties of rate earth crystals. During his PhD studies at the Weizmann Institute of Science (Israel) he worked on dye-sensitized solar cells in the group of Prof. David Cahen, investigating the interface and transport properties in such nano-composite solar cells. He received his doctoral degree in 2005 and was awarded the Dimitris N. Chorafas Prize for his thesis. From 2005 to 2007 he joined the group of Prof. D. Vanmaekelbergh at Utrecht University (The Netherlands) as a postdoc, where he worked on the lasing of ZnO nanorods and nanowires. Since 2008 he is at Bar Ilan University, leading the “Combinatorial All-Oxide Photovoltaics” project in the group of Prof. A. Zaban.

Sven Rühle has published more than 25 scientific papers in international peer reviewed scintific jounals.

 Links

Google Scholar Profile

Researcher ID

Publications

  • Sven Rühle, Assaf Y. Anderson, Hannah-Noa Barad, Benjamin Kupfer, Yaniv Bouhadana, Eli Rosh-Hodesh, and Arie Zaban.
    All Oxide Photovoltaics.
    J. Phys. Chem. Lett. 2012, 3, 3755-3764.
  • Ruhle, S.; Yahav, S.; Greenwald, S.; Zaban, A., The Importance of Recombination at the TCO / Electrolyte Interface for High Efficiency Quantum Dot Sensitized Solar Cells.
    The J. Phys. Chem. C, 2012, 116, 17473−17478.
  • Yahav, S.; Ruhle, S.; Greenwald, S.; Barad, H. N.; Shalom, M.; Zaban, A.
    Strong Efficiency Enhancement of Dye-Sensitized Solar Cells using a La Modified TiCl4 Treatment of Mesoporous TiO2 Electrodes.
    The J. Phys. Chem. C 2011 115 (43), 21481–21486.
  • Tachan, Z.; Shalom, M.; Hod, I.; Rühle, S.; Tirosh, S.; Zaban, A.
    PbS as a Highly Catalytic Counter Electrode for Polysulfide-Based Quantum Dot Solar Cells.
    The J. Phys. Chem. C 2011, 115(13), 6162-6166.
  • Greenwald, S.; Rühle, S.; Shalom, M.; Yahav, S.; Zaban, A.
    Unpredicted electron injection in CdS/CdSe quantum dot sensitized ZrO2 solar cells.
    Phys. Chem. Chem. Phys. 2011, 13 (43), 19302-19306.
  • Tachan, Z.; Ruhle, S.; Zaban, A.
    Dye-sensitized solar tubes: A new solar cell design for efficient current collection and improved cell sealing.
    Solar Energy Materials and Solar Cells 2010, 94 (2), 317-322.
  • Hod, I.; Shalom, M.; Tachan, Z.; Rühle, S.; Zaban, A.
    SrTiO3 Recombination-Inhibiting Barrier Layer for Type II Dye-Sensitized Solar Cells.
    The J. Phys. Chem. C 2010, 114 (21), 10015-10018.
  • Rühle, S.; Shalom, M.; Zaban, A
    Quantum‐Dot‐Sensitized Solar Cells.
    ChemPhysChem 2010, 11 (11), 2290-2304.
  • Grinis, L.; Kotlyar, S.; Rühle, S.; Grinblat, J.; Zaban, A.
    Conformal Nano‐Sized Inorganic Coatings on Mesoporous TiO2 Films for Low‐Temperature Dye‐Sensitized Solar Cell Fabrication.
    Advanced Functional Materials 2010, 20 (2), 282-288.
  • Rühle, S.; Segal, A.; Vilan, A.; Kurtz, S. R.; Grinis, L.; Zaban, A.; Lubomirsky, I.; Cahen, D.
    A two junction, four terminal photovoltaic device for enhanced light to electric power conversion using a low-cost dichroic mirror.
    Journal of Renewable and Sustainable Energy 2009, 1, 013106.
  •  
  • Dor, S.; Rühle, S.; Ofir, A.; Adler, M.; Grinis, L.; Zaban, A.
    The influence of suspension composition and deposition mode on the electrophoretic deposition of TiO2 nanoparticle agglomerates.
    Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009, 342 (1), 70-75.
  • Dor, S.; Grinis, L.; Rühle, S.; Zaban, A.
    Electrochemistry in mesoporous electrodes: Influence of nanoporosity on the chemical potential of the electrolyte in dye sensitized solar cells.
    The J. Phys. Chem. C 2009, 113(5), 2022-2027.
  • Shalom, M.; Rühle, S.; Hod, I.; Yahav, S.; Zaban, A.
    Energy level alignment in cds quantum dot sensitized solar cells using molecular dipoles.
    J. Am. Chem. Soc. 2009, 131 (29), 9876-9877.
  • Shalom, M.; Dor, S.; Ruhle, S.; Grinis, L.; Zaban, A.
    Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating.
     J. Phys. Chem. C 2009, 113 (9), 3895-3898.
  • Li, H. Y.; Ruhle, S.; Khedoe, R.; Koenderink, A.; Vanmaekelbergh, D.
    Polarization, microscopic origin, and mode structure of luminescence and lasing from single ZnO nanowires.
    Nano letters 2009, 9 (10), 3515-3520.
  • Rühle, S.; Van Vugt, L.; Li, H. Y.; Keizer, N.; Kuipers, L.; Vanmaekelbergh, D.
    Nature of sub-band gap luminescent eigenmodes in a ZnO nanowire.
    Nano letters 2008, 8 (1), 119-123.
  • Rühle, S.; Greenwald, S.; Koren, E.; Zaban, A.
    Optical waveguide enhanced photovoltaics.
    Optics Express 2008, 16 (26), 21801-21806.
  • Van Vugt, L. K.; Rühle, S.; Vanmaekelbergh, D.
    Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire.
    Nano letters 2006, 6 (12), 2707-2711.
  • Van Vugt, L. K.; Rühle, S.; Ravindran, P.; Gerritsen, H. C.; Kuipers, L.;Vanmaekelbergh, D.
    Exciton polaritons confined in a ZnO nanowire cavity.
    Physical review letters 2006, 97 (14), 147401.
  • Rühle, S.; Dittrich, T.
    Recombination controlled signal transfer through mesoporous TiO2 films.
    The J. Phys. Chem. B 2006, 110(9), 3883-3888.
  • Niitsoo, O.; Sarkar, S. K.; Pejoux, C.; Ruhle, S.; Cahen, D.; Hodes, G.
    Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells.
    Journal of Photochemistry and Photobiology A: Chemistry 2006, 181(2-3), 306-313.
  • Fredin, K.; Ruhle, S.; Grasso, C.; Hagfeldt, A.
    Studies of coupled charge transport in dye-sensitized solar cells using a numerical simulation tool.
    Solar energy materials and solar cells 2006, 90 (13), 1915-1927.
  • Rühle, S.; Greenshtein, M.; Chen, S. G.; Merson, A.; Pizem, H.; Sukenik, C. S.; Cahen, D.; Zaban, A.
    Molecular adjustment of the electronic properties of nanoporous electrodes in dye-sensitized solar cells. The J. Phys. Chem. B 2005, 109 (40), 18907-18913.
  • Rühle, S.; Dittrich, T.
    Investigation of the electric field in TiO2/FTO junctions used in dye-sensitized solar cells by photocurrent transients.
     J. Phys. Chem. B 2005, 109 (19), 9522-9526.
  • Rühle, S.; Cahen, D
    Electron tunneling at the TiO2/substrate interface can determine dye-sensitized solar cell performance.
    J. Phys. Chem. B 2004, 108 (46), 17946-17951.
  • Rühle, S.; Cahen, D.
    Contact-free photovoltage measurements of photoabsorbers using a Kelvin probe. Journal of applied physics 2004, 96 (3), 1556-1562.
  • Bisquert, J.; Cahen, D.; Hodes, G.; Rühle, S.; Zaban, A.
    Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells.
    The J. Phys. Chem. B 2004, 108 (24), 8106-8118.
  • Hellwig, H.; Ruhle, S.; Held, P.; Bohaty, L.
    Polar potassium rare earth nitrates K2 [RE (NO3) 5 (H2O) 2](RE= La, Ce, Pr and Nd). II. Linear and nonlinear optical properties.
  • Lenzmann, F.; Krueger, J.; Burnside, S.; Brooks, K.; Grätzel, M.; Gal, D.; Rühle, S.; Cahen, D.
    Surface photovoltage spectroscopy of dye-sensitized solar cells with TiO2, Nb2O5, and SrTiO3 nanocrystalline photoanodes: Indication for electron injection from higher excited dye states.
    J. Phys. Chem. B 2001, 105 (27), 6347-6352.
  • Held, P.; Hellwig, H.; Ruhle, S.; Bohaty, L.
    Polar potassium rare earth nitrates K2 [RE (NO3) 5 (H2O) 2](RE= La, Ce, Pr and Nd). I. Crystal growth and crystal structures.
    Journal of applied crystallography 2000, 33 (2), 380-386.

 

 

 

 

 

 

 

48

48

47

47

46

46

45

45

44

44

43

43

42

42

41

41

40

40

39

39

38

38

37

37

36

36

34

34

33

33

32

32

31

31

30

30

29

29

28

28

27

27

26

26

23

23

22

22

19

19

15

15

12

12

11

11

10

10

marina

marina

hn-ma

hn-ma

4hanna

4hanna

purim1

purim1

purim3

purim3